Indium tin oxide as a semiconductor material in efficient p-type dye-sensitized solar cells

نویسندگان

  • Ze Yu
  • Ishanie R. Perera
  • Torben Daeneke
  • Satoshi Makuta
  • Yasuhiro Tachibana
  • Jacek J. Jasieniak
  • Amaresh Mishra
  • Peter Bäuerle
  • Leone Spiccia
  • Udo Bach
چکیده

Indium tin oxide (ITO) is a well-known n-type degenerate semiconductor with a wide variety of electronic and optoelectronic applications. Herein ITO is utilized as a photocathode material in p-type dye-sensitized solar cells in place of the commonly applied and highly colored nickel oxide (NiO) semiconductor. The application of mesoporous ITO photocathodes, [Fe(acac)3] as a redox mediator and a new organic dye afforded an impressive energy conversion efficiency of 1.96±0.12%. Comparative transient absorption spectroscopic studies indicated that the recombination rate at the ITO–electrolyte interface is two orders of magnitude faster than that of NiO. Analysis of the operation mechanism of the ITO-based devices with ultraviolet photon spectroscopy and photoelectron spectroscopy in air showed that ITO exhibits a significant local density of states arising below −4.8 eV, which enables electron transfer to occur from the ITO to the excited dye, thus giving rise to the sustained photocathodic current. NPG Asia Materials (2016) 8, e305; doi:10.1038/am.2016.89; published online 9 September 2016

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Charge transfer resistance of spray deposited and compressed counter electrodes for dye-sensitized nanoparticle solar cells on plastic substrates

Electrochemical impedance spectroscopy was used to determine the effective charge transfer resistances of porous dye-sensitized solar cell counter electrodes prepared by low-temperature spray deposition and compression of conductive carbon and platinized Sb-doped SnO2 powders on indium tin oxide-coated plastic substrates. The charge transfer resistances were 0.5–2 and 8–13O cm, respectively, wh...

متن کامل

Enhanced light-conversion efficiency of titanium- dioxide dye-sensitized solar cells with the addition of indium-tin-oxide and fluorine-tin-oxide nanoparticles in electrode films

We prepared of electrodes that consist of TiO2 with addition of tin-doped indium oxide (ITO) or fluorine-doped tin oxide (FTO) nanoparticles and the application of such electrodes on dye-sensitized solar cell. As compared to TiO2 alone, the addition of ITO and FTO nanoparticles resulted in an efficiency improvement of ~ 20% up to ~ 54% for the TiO2ITO and TiO2-FTO systems, respectively. This im...

متن کامل

Top-illuminated dye-sensitized solar cells with a room-temperature-processed ZnO photoanode on metal substrates and a Pt-coated Ga-doped ZnO counter electrode

We report on top-illuminated, fluorine tin oxide/indium tin oxide-free (FTO/ITO-free), dye-sensitized solar cells (DSCs) using room-temperature-processed ZnO layers on metal substrates as the working electrodes and Pt-coated Ga-doped ZnO layers (GZO) as the counter electrodes. These top-illuminated DSCs with GZO render comparable efficiency to those employing commercial FTO counter electrodes. ...

متن کامل

New Dye-Sensitized Solar Cells Obtained from Extracted Bracts of Bougainvillea Glabra and Spectabilis Betalain Pigments by Different Purification Processes

The performance of a new dye-sensitized solar cell (DSSC) based in a natural dye extracted from the Bougainvillea spectabilis' bracts, is reported. The performance of this solar cell was compared with cells prepared using extract of the Bougainvillea glabra and mixture of both extracts; in both cases the pigments were betalains, obtained from Reddish-purple extract. These dyes were purified to ...

متن کامل

Radial electron collection in dye-sensitized solar cells.

We introduce a new photoelectrode architecture consisting of concentric conducting and semiconducting nanotubes for use in dye-sensitized solar cells (DSSCs). Atomic layer deposition is employed to grow indium tin oxide (ITO) within a porous template and subsequently coat the high area photoelectrode with amorphous TiO 2. Compared with control devices lacking a current collector within the pore...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016